metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[(μ_4 -tetrazole-1-acetato- $\kappa^4 N^3$: N^4 :O:-O')silver(I)]

Shi-Jie Li,^a Hao Wang,^a Wen-Dong Song,^b* Shi-Wei Hu^a and Pei-Wen Qin^c

^aCollege of Food Science and Technology, Guang Dong Ocean University, Zhanijang 524088, People's Republic of China, ^bCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and College of Agriculture, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China

Correspondence e-mail: songwd60@126.com

Received 29 December 2009; accepted 11 January 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.012 Å; R factor = 0.062; wR factor = 0.177; data-to-parameter ratio = 13.8.

In the title complex, $[Ag(C_3H_3N_4O_2)]_n$, the Ag^I atom is fourcoordinated in a slightly distorted tetrahedral coordination geometry by two N atoms from two tetrazole-1-acetate (tza) ligands and two O atoms from the other two tza ligands. The tza ligand bridges two Ag atoms through the carboxylate O atoms and simultaneously binds to the other two Ag atoms through the tetrazole N atoms, forming a two-dimensional network parallel to (100).

Related literature

For the diverse coordination modes and potential applications of metal complexes with tetrazole derivatives, see: Stagni et al. (2006); Ye et al. (2006).

Experimental

Crystal data $[Ag(C_3H_3N_4O_2)]$

 $M_r = 234.96$

Triclinic, $P\overline{1}$	$V = 277.92 (14) \text{ Å}^3$
a = 5.1584 (10) Å	Z = 2
b = 7.7805 (16) Å	Mo $K\alpha$ radiation
c = 7.8711 (16) Å	$\mu = 3.56 \text{ mm}^{-1}$
$\alpha = 109.40 \ (3)^{\circ}$	T = 293 K
$\beta = 98.87 \ (3)^{\circ}$	$0.25 \times 0.23 \times 0.21 \text{ mm}$
$\gamma = 104.85 (3)^{\circ}$	
Data collection	

Rigaku/MSC Mercury CCD	2722 measured reflections
diffractometer	1267 independent reflections
Absorption correction: multi-scan	1150 reflections with $I > 2\sigma(I)$
(REQAB; Jacobson, 1998)	$R_{\rm int} = 0.056$
$T_{\min} = 0.470, \ T_{\max} = 0.522$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ 92 parameters $wR(F^2) = 0.177$ H-atom parameters constrained $\Delta \rho_{\rm max} = 2.15 \text{ e} \text{ Å}^-$ S = 1.23 $\Delta \rho_{\rm min} = -0.97 \text{ e } \text{\AA}^{-3}$ 1267 reflections

Table 1

Selected bond lengths (Å).

Ag1-O1	2.330 (7)	Ag1-N3 ⁱⁱ	2.494 (9)
Ag1-O2 ⁱ	2.282 (7)	Ag1-N4 ⁱⁱⁱ	2.442 (8)
Symmetry codes: (i) -	-x + 1, -y, -z; (ii) $x, -z$	y - 1, z - 1; (iii) -	-x + 1, -y, -z + 1.

Data collection: CrystalStructure (Rigaku/MSC, 2002); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

The authors acknowledge Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2270).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Jacobson, R. (1998). REQAB. Private communication to the Molecular Structure Corporation, The Woodlands, Texas, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stagni, S., Palazzi, A., Zacchini, S., Ballarin, B., Bruno, C., Marcaccio, M., Paolucci, F., Monari, M., Carano, M. & Bard, A. J. (2006). Inorg. Chem. 45, 695-709.
- Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.

supplementary materials

Acta Cryst. (2010). E66, m160 [doi:10.1107/S1600536810001236]

Poly[(μ_4 -tetrazole-1-acetato- $\kappa^4 N^3$: N^4 :O:O')silver(I)]

S.-J. Li, H. Wang, W.-D. Song, S.-W. Hu and P.-W. Qin

Comment

In recent years, organic ligands with a tetrazole functional group have been greatly used in coordination chemistry for construction of metal-organic frameworks due to their diverse coordination modes and potential applications in varied fields (Stagni *et al.*, 2006; Ye *et al.*, 2006). The reaction of tetrazole-1-acetic acid (Htza) with AgNO₃ in an alkaline aqueous solution yielded a new Ag^I coordination polymer, whose crystal structure is reported here.

In the title complex, the Ag^{I} atom is four-coordinated in a slightly distorted tetrahedral coordination geometry by two N atoms and two O atoms from four different tza ligands (Table 1), as illustrated in Fig. 1. The adjacent Ag^{I} atoms are co-bridged by tza liands. The tza ligand acts as a tetradentate ligand, bridging two Ag atoms through its carboxylate O atoms, while simultaneously binding to the other two Ag atoms through two N atoms of the tetrazole group, forming a two-dimensional network parallel to (1 0 0).

Experimental

A mixture of $AgNO_3$ (0.073 g, 0.5 mmol) and Htza (0.990 g, 0.5 mmol) in 15 ml of H₂O solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 373 K for 4 d. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

H atoms were placed at calculated positions and treated as riding on the parent C atoms, with C—H = 0.93 (CH) and 0.97 (CH₂) Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual electron density was found 1.40 Å from N4 and the deepest hole 1.12 Å from Ag1.

Figures

Fig. 1. The asymmetric unit of the title compound, with symmetrically related atoms to complete the Ag coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1-x, -y, -z; (ii) x, -1+y, -1+z; (iii) 1-x, -y, 1-z; (iv) 1-x, 1-y, 1-z; (v) x, y, -1+z.]

Fig. 2. A view of the layer structure of the title compound.

Poly[(μ_4 -tetrazole-1-acetato- $\kappa^4 N^3$: N^4 :O:O')silver(I)]

Crystal data	
$[Ag(C_3H_3N_4O_2)]$	Z = 2
$M_r = 234.96$	F(000) = 224
Triclinic, PT	$D_{\rm x} = 2.808 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.1584 (10) Å	Cell parameters from 3600 reflections
b = 7.7805 (16) Å	$\theta = 1.4 - 28^{\circ}$
c = 7.8711 (16) Å	$\mu = 3.56 \text{ mm}^{-1}$
$\alpha = 109.40 \ (3)^{\circ}$	<i>T</i> = 293 K
$\beta = 98.87 \ (3)^{\circ}$	Block, blue
$\gamma = 104.85 (3)^{\circ}$	$0.25\times0.23\times0.21~mm$
$V = 277.92 (14) \text{ Å}^3$	

Data collection

Rigaku/MSC Mercury CCD diffractometer	1267 independent reflections
Radiation source: fine-focus sealed tube	1150 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.056$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
Absorption correction: multi-scan (REQAB; Jacobson, 1998)	$h = -6 \rightarrow 6$
$T_{\min} = 0.470, \ T_{\max} = 0.522$	$k = -9 \rightarrow 10$
2722 measured reflections	$l = -10 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.062$	H-atom parameters constrained
$wR(F^2) = 0.177$	$w = 1/[\sigma^2(F_o^2) + (0.0519P)^2 + 3.2858P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.23	$(\Delta/\sigma)_{\rm max} < 0.001$
1267 reflections	$\Delta \rho_{max} = 2.15 \text{ e} \text{ Å}^{-3}$

92 parameters	$\Delta \rho_{\rm min} = -0.97 \ e \ {\rm \AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.052 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.61189 (17)	-0.19436 (12)	-0.05077 (10)	0.0387 (5)
01	0.9281 (15)	0.0639 (10)	0.2082 (10)	0.0365 (16)
O2	0.6195 (14)	0.1949 (12)	0.3227 (10)	0.0360 (16)
N1	0.9120 (16)	0.3243 (11)	0.6770 (10)	0.0277 (16)
N2	0.872 (2)	0.4946 (12)	0.7248 (12)	0.0376 (19)
N3	0.7161 (19)	0.4973 (12)	0.8396 (12)	0.0363 (19)
N4	0.656 (2)	0.3322 (13)	0.8697 (12)	0.0351 (18)
C1	0.8444 (18)	0.1645 (13)	0.3374 (12)	0.0265 (17)
C2	1.0509 (18)	0.2615 (13)	0.5323 (12)	0.0267 (17)
H2A	1.1368	0.1710	0.5545	0.032*
H2B	1.1964	0.3719	0.5373	0.032*
C3	0.781 (2)	0.2254 (15)	0.7646 (14)	0.034 (2)
H3	0.7775	0.1022	0.7545	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Ag1	0.0430 (6)	0.0441 (6)	0.0259 (5)	0.0145 (4)	0.0071 (3)	0.0105 (3)
01	0.033 (3)	0.031 (3)	0.034 (4)	0.013 (3)	0.010 (3)	-0.003 (3)
O2	0.028 (3)	0.055 (4)	0.029 (3)	0.020 (3)	0.008 (3)	0.016 (3)
N1	0.033 (4)	0.030 (4)	0.021 (3)	0.011 (3)	0.008 (3)	0.009 (3)
N2	0.051 (5)	0.027 (4)	0.033 (4)	0.013 (4)	0.017 (4)	0.008 (3)
N3	0.045 (5)	0.030 (4)	0.030 (4)	0.010 (4)	0.012 (4)	0.008 (3)
N4	0.048 (5)	0.034 (4)	0.030 (4)	0.020 (4)	0.017 (4)	0.014 (3)
C1	0.026 (4)	0.028 (4)	0.025 (4)	0.010 (3)	0.005 (3)	0.009 (3)
C2	0.023 (4)	0.032 (4)	0.022 (4)	0.010 (3)	0.003 (3)	0.007 (3)
C3	0.041 (5)	0.033 (5)	0.032 (5)	0.014 (4)	0.013 (4)	0.015 (4)

Geometric parameters (Å, °)

Ag1—O1	2.330 (7)	N1—C2	1.453 (11)
Ag1—O2 ⁱ	2.282 (7)	N2—N3	1.297 (12)
Ag1—N3 ⁱⁱ	2.494 (9)	N3—N4	1.350 (12)
Ag1—N4 ⁱⁱⁱ	2.442 (8)	N4—C3	1.331 (13)
O1—C1	1.270 (11)	C1—C2	1.540 (12)
O2—C1	1.238 (11)	C2—H2A	0.9700
N1—C3	1.324 (12)	C2—H2B	0.9700
N1—N2	1.331 (12)	С3—Н3	0.9300

supplementary materials

129.2 (3)	C3—N4—N3	105.1 (8)
118.7 (3)	C3—N4—Ag1 ⁱⁱⁱ	117.8 (6)
95.0 (3)	N3—N4—Ag1 ⁱⁱⁱ	137.0 (6)
102.2 (3)	O2—C1—O1	127.3 (9)
118.0 (3)	O2—C1—C2	117.2 (8)
86.0 (3)	O1—C1—C2	115.5 (8)
120.6 (6)	N1—C2—C1	111.1 (7)
121.2 (6)	N1—C2—H2A	109
109.2 (8)	C1—C2—H2A	109
128.9 (8)	N1—C2—H2B	109
121.4 (8)	C1—C2—H2B	109
106.3 (8)	H2A—C2—H2B	108
111.0 (8)	N1—C3—N4	108.4 (9)
112.1 (6)	N1—C3—H3	126
136.9 (6)	N4—C3—H3	126
	129.2 (3) 118.7 (3) 95.0 (3) 102.2 (3) 118.0 (3) 86.0 (3) 120.6 (6) 121.2 (6) 109.2 (8) 128.9 (8) 121.4 (8) 106.3 (8) 111.0 (8) 112.1 (6) 136.9 (6)	129.2 (3)C3—N4—N3 $118.7 (3)$ C3—N4—Ag1 ⁱⁱⁱ $95.0 (3)$ N3—N4—Ag1 ⁱⁱⁱ $102.2 (3)$ O2—C1—O1 $118.0 (3)$ O2—C1—C2 $86.0 (3)$ O1—C1—C2 $120.6 (6)$ N1—C2—C1 $121.2 (6)$ N1—C2—H2A $109.2 (8)$ C1—C2—H2A $128.9 (8)$ N1—C2—H2B $121.4 (8)$ C1—C2—H2B $106.3 (8)$ H2A—C2—H2B $111.0 (8)$ N1—C3—N4 $112.1 (6)$ N1—C3—H3 $136.9 (6)$ N4—C3—H3

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) *x*, *y*-1, *z*-1; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*, *y*+1, *z*+1.

Fig. 1

